本课程系统构建机器学习所需的概率统计基础,从条件概率、随机变量等核心概念切入,逐步深入多元分布、极限定理与随机过程。重点解析马尔科夫链及其稳态特性,延伸至隐马尔科夫模型的双序列机理,并结合前向算法与维特比解码实践应用。统计推断部分涵盖极大似然估计、贝叶斯推断及近似采样方法,最终通过马尔科夫链-蒙特卡洛(MCMC)实现复杂分布采样。课程融合理论推演与蒙特卡洛模拟,帮助学习者建立统计思维,掌握概率建模与算法优化的核心能力。
声明
1. 转载请附上原文链接,谢谢!!!
2. 本站所有资源文章出自互联网收集整理,本站不参与录制和制作。如果侵犯了您的合法权益,请联系本站我们会及时删除。
3. 本站所有资源均来源于网络,请勿相信连接中存在的引流、二维码等信息,请用户自行鉴别,否则后果由用户自行承担。
4. 本站资源仅供研究和学习,请勿用于商业用途及任何违规违法操作,支持正版,否则产生的一切后果将由下载用户自行承担。
5. 如有资源失效情况,评论尽量补链。
6. 联系方式:692086840#qq.com(#换成@)
1. 转载请附上原文链接,谢谢!!!
2. 本站所有资源文章出自互联网收集整理,本站不参与录制和制作。如果侵犯了您的合法权益,请联系本站我们会及时删除。
3. 本站所有资源均来源于网络,请勿相信连接中存在的引流、二维码等信息,请用户自行鉴别,否则后果由用户自行承担。
4. 本站资源仅供研究和学习,请勿用于商业用途及任何违规违法操作,支持正版,否则产生的一切后果将由下载用户自行承担。
5. 如有资源失效情况,评论尽量补链。
6. 联系方式:692086840#qq.com(#换成@)
评论(0)